Si Detectors in Nuclear and High Energy Physics Experiments and BNL's Detector Development and Processing Capabilities

Zheng Li Brookhaven National Laboratory

^{*}This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-98CH10886

OUTLINE

- Detector material and configurations
- Various Si detectors
 - Existing technologies (good for sPHENIX, 5 years)
 - New technologies (good for ePHENIX, 10 years)
- Detector processing facilities
 - National labs and universities
 - Commercial
 - BNL detector development and processing capabilities
- Summary

Semiconductor Materials For Particle Detectors

	Density (g/cm³)	Bandgap (eV)	Dielectric constant	Displace-ment threshold energy (eV)	e-h creation energy (eV)	μ _e (cm/s/V)	μ _h (cm/s/V)	# of e-h pairs/0.3% ${ m X_0}$
Si	2.3	1.12	11.9	13.5	3.6	1450 Good e mobility	450 Good h mobility	24k Good signal
C (Diamond)	3.5	5.5 Very low leakage current at RT	5.7 Small capacitance	80 Much less lattice damage	13-17	1800 Good e mobility	1200 Very good h mobility	7.2k Low signal
SiC	3.2	3.3 Low leakage current at RT	9.7	30 Less lattice damage	9	400-900 Modest e mobility	20-50 Poor h mobility	13k
Ge	5.3 Hi Z, good for hard X-ray	0.66 Hi leakage current at RT	16 Large capacitance	15	3	3900 Very good e mobility	1900 Very good h mobility	16k
CdTe	5.9 Hi Z, good for hard X-ray	1.49	10	6.7	5	1050 Good e mobility	100 Poor h mobility	6.6k Low signal

Why do we concentrate our efforts on Si detectors?

Si is by far the most used material for particle detectors for its:

- Abundance on earth
- Mature and reproducible wafer manufacture
- Natural oxide for passivation and masking
- Mature processing technology (easy for segmentation, small segmentations and integration)
- Radiation hardness
- Used extensively and successfully in experiments
- Choices: use something exist and working (less cost) or something new requires R&D

Semiconductor Detector Configuration (Conventional)

	Spatial Sensitivity	Mostly Used for	Rad-hardness	Processing	Readout
Pixel/Pad	2D Pixel size(\sqrt{A}): 10 μm to mm's	HEP/NP	Good (small area – small leakage current)	Single-sided	Each pixel (fast, 10's ns)
Single-sided strip	1D Strip pitch: 10 µm to mm's	HE/NP	Modest	Single-sided	Each strip, e's or h's (fast, 10's ns)
Double-sided strip	2D Strip pitch: 40 µm to mm's	HE/NP	Not good (n-side not rad- hard)	Double-sided	Each strip, e's and h's (fast, 10's ns)
CCD (Charge-coupled-device)	2D Pixel size(√A): >10's μm	X-ray and others (LSST)	Not good (very sensitive to trapping)	Single-sided	Each column (slow, μs's)
Drift (SDD) (Si drift detector)	2D Anode size >10's μm	X-ray and others (STAR, ALICE)	Not good (very sensitive to trapping, and to doping change)	Double-sided	Each anode, e's (slow, μs's)
AMPS (JFET) (Active matrix pixel sensor) DEPFET (PMOS) (Depleted P-channel FET) Fully depleted	2D Pixel size(√A): ~100's μm	X-ray and others	Not good (very sensitive to trapping, and to doping change)	Double-sided	Each column (slow, μs's-ms)
MAPS (CMOS) (Monolithic active pixel sensor)	2D Pixel size(\sqrt{A}): ~10 μm	X-ray and others HEP/NP	Modest? (very low resistivity EPI Si)	EPI Si (20-50µm) SOI (fully depleted)	Each column (slow, µs's-ms)

(STAR)

Semiconductor Detector Configuration (new)

	Spatial Sensitivity	Mostly Used for	Rad-hardness	Processing	Readout
2D stripixel	2D Strip pitch: 10 μm to 100's μm s	HE/NP (PHENIX VTX)	Modest	Single-sided	Each strip (fast, 10's ns) (charge sharing)
3D stripixel	2D Strip pitch: 10 μm to 100's μm s D	HE/NP	Good	3D processing Single-sided or double-sided	Each strip, e's and h's (fast, <10 ns)
3D trench (pixel, strip, and stripixel), BNL, patent pending	2D Strip pitch: 100's µm to mm's	HE/NP X-ray	Very good	3D processing Single-sided or double-sided	Each pixel/strip, e's and/or h's (fast, <10 ns)

Pixel detector and bump-bonding technology (Used extensively, CERN, RHIC, etc.)

Pixellated semiconductor detector Bump-bonding (In) Readout chip One pixel element

Solder bumps on a fluxless MCNC detector S. Cihangir, S. Kwan

NIM A 476 (2002) 670–675

Si Drift Detector (SDD) (STAR, ALICE, X-ray, etc.)

E. Gatti and P. Rehak, "Semiconductor Drift Chamber" – An application of a novel Charge Transport Scheme", Nucl. Instr. and Meth., A 255, pp. 608-614, 1984.

X-ray Active Matrix Pixel Sensor (XAMPS, BNL)

(LUSI in SLAC)

Monolithic Active Pixel Sensor (MAPS)-CMOS (STAR)

APS Argonne Nat. Lab., December 8-9 2005

Grzegorz DEPTUCH

CMOS IMAGE SENSORS IN HEP - MAPS

>> Operation principle of photodiode MAPS

Monolithic Active Pixel Sensors (MAPS)

(INCIDENT/PHOTONS **PASSIVATION** OXIDE **NWELL** PWEL charge charge collected shared entirely between by one pixels neighbouring) hv pixels DEPLETION **EPI-LAYER** ZONE SUBSTRATE

structure proposed for visible light allowing 100% detection efficiency (tracking!)

operation:

- ⇒ signal generated in epitaxial layer (low doping)
 Q≈80e⁻h⁺/μm ⇒~1000e⁻,
- >> charge collection through thermal diffusion,
- signal sensed as voltage drop on N-WELL anodes.
- reflection bondaries at P-WELL and P-SUB.

ADVANTAGES:

BROOKHAVEN

decoupled charge sensing and signal transfer (improved radiation tolerance,

anders assess ste) amall nitch /hinh tracking presidies) law amount of

material, last readout, moderate price, ooc, etc.

MAPS-SOI (R&D)

J. Marczewski et al., NIM A 549 (2005) 112-116

No charge sharing

ePHENIX

 New 3D-Trench electrode configuration (Z. Li, 10/2009 BNL)

or Independent Coaxial Detector Array (ICDA)

- Mask set has been design and made
- Processing of the first prototype batch p⁺ will start in 10/2010 at CNM
- First prototype batch will be ready for testing in May 2011.

BNL new 3D-Trench Electrode detector CT filed on 10/15/2010

 $-\mathbf{V}$

CT/US2010/52887)

3D simulations of electric field

ePHENIX

Hexangular shape

Full depletion voltage (150 μm electrode spacing):

e spacing):

52 V, uniform

2000

Detector Processing Facilities -1

University and National Labs

	Main Detector Technology	Main Material		Particle Physics related
BNL USA	Pixel, Strip/Stripixel SDD, AMPS 3D (Development, simulation, and design)	Si	4", 6"	US ATLAS CERN RD39 CERN RD50 RHIC (X-ray det for photons)
CNM Spain	Pixel, Strip, 3D	Si		ATLAS CERN RD50
HIP Finland	Pixel Strip	Si		CMS CERN RD39 CERN RD50
LBL USA	Fully-depleted CCD, Strip	Si, Ge		X-ray Astrophysics
MPI Halbleiterlabor Germany	Pixel, Strip, SDD AMPS, DEPFET	Si	4", 6"	X-ray Astrophysics

Detector Processing Facilities -- 2

Commercial

	Main Detector Technology	Main Material	Wafer size	Particle Physics related
CiS-MSP Germany	Pixel, Strip	Si	4"	CERN RD50
FBK-IRST (Trento) Italy	Pixel, Strip, 3D	Si	4", 6"	CERN RD50
Hamamatsu Japan	Pixel, Strip, Stripixel (No double- sided)	Si	4", 6"	LHC/sLHC
KETEK Germany	SDD AMPS	Si	4", 6"	X-ray
Micron Semiconductors UK	Pixel Strip	Si	4", 6"	CMS CERN RD39 CERN RD50
SINTEF Norway	Pixel, Strip, 3D	Si	4", 6"	ATLAS

BNL Si Detector R&D Program

- Scientific and engineering resources in the Instrumentation Div.
- Silicon detector processing facility
- Detector fabrication capability:
 - Process and device simulation
 - Detector and mask design
 - Processing steps (oxidation, photolithography, metallization)
 - Testing and characterization

Detector R&D

Silicon Drift Detectors
Stripixels, strip, and pixel
Radiation resistant Silicon
XAMPS
For NP,HEP, Photon science

Summary

- o Si detectors are still the detector of choice for NE, HEP, and photon sciences
- Many detector configurations and technologies are readily available for application needs (sPHENIX)
- o New 3D technology and detectors are now developed, and can be used for future applications (ePHENIX)
- o BNL is at the forefront of the prototype and novel detector development and fabrications